IRAK-4 mutation (Q293X): rapid detection and characterization of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells.
نویسندگان
چکیده
Innate immunodeficiency has recently been reported as resulting from the Q293X IRAK-4 mutation with consequent defective TLR/IL-1R signaling. In this study we report a method for the rapid allele-specific detection of this mutation and demonstrate both cell type specificity and ligand specificity in defective IL-1R-associated kinase (IRAK)-4-deficient cellular responses, indicating differential roles for this protein in human PBMCs and primary dermal fibroblasts and in LPS, IL-1beta, and TNF-alpha signaling. We demonstrate transcriptional and post-transcriptional defects despite NF-kappaB signaling and intact MyD88-independent signaling and propose that dysfunctional complex 1 (IRAK1/TRAF6/TAK1) signaling, as a consequence of IRAK-4 deficiency, generates specific defects in MAPK activation that could underpin this patient's innate immunodeficiency. These studies demonstrate the importance of studying primary human cells bearing a clinically relevant mutation; they underscore the complexity of innate immune signaling and illuminate novel roles for IRAK-4 and the fundamental importance of accessory proinflammatory signaling to normal human innate immune responses and immunodeficiencies.
منابع مشابه
Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity
Human interleukin (IL) 1 receptor-associated kinase 4 (IRAK-4) deficiency is a recently discovered primary immunodeficiency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3- and TLR4-interferon (IFN)-alpha/beta pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with IRAK-4 deficiency, tested blood TLR responses f...
متن کاملRegulation of Interleukin-1- and Lipopolysaccharide-Induced NF-κB Activation by Alternative Splicing of MyD88
MyD88 is an adaptor protein that is involved in interleukin-1 receptor (IL-1R)- and Toll-like receptor (TLR)-induced activation of NF-kappaB. It is composed of a C-terminal Toll/IL-1R homology (TIR) domain and an N-terminal death domain (DD), which mediate the interaction of MyD88 with the IL-1R/TLR and the IL-1R-associated kinase (IRAK), respectively. The interaction of MyD88 with IRAK trigger...
متن کاملIL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses.
IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascad...
متن کاملRegulation of IL-1 receptor-associated kinases by lipopolysaccharide.
IL-1R-associated kinase (IRAK) plays a pivotal role in IL-1R/Toll-like receptor (TLR)-mediated signaling and NF-kappaB activation. IRAK from leukocytes undergoes rapid activation and inactivation/degradation following IL-1 or LPS stimulation. The rapid degradation of IRAK may serve as a negative feedback mechanism of down-regulating IL-1R/TLR-mediated signaling and cytokine gene transcription. ...
متن کاملInherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.
Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 177 11 شماره
صفحات -
تاریخ انتشار 2006