IRAK-4 mutation (Q293X): rapid detection and characterization of defective post-transcriptional TLR/IL-1R responses in human myeloid and non-myeloid cells.

نویسندگان

  • Donald J Davidson
  • Andrew J Currie
  • Dawn M E Bowdish
  • Kelly L Brown
  • Carrie M Rosenberger
  • Rebecca C Ma
  • Johan Bylund
  • Paul A Campsall
  • Anne Puel
  • Capucine Picard
  • Jean-Laurent Casanova
  • Stuart E Turvey
  • Robert E W Hancock
  • Rebecca S Devon
  • David P Speert
چکیده

Innate immunodeficiency has recently been reported as resulting from the Q293X IRAK-4 mutation with consequent defective TLR/IL-1R signaling. In this study we report a method for the rapid allele-specific detection of this mutation and demonstrate both cell type specificity and ligand specificity in defective IL-1R-associated kinase (IRAK)-4-deficient cellular responses, indicating differential roles for this protein in human PBMCs and primary dermal fibroblasts and in LPS, IL-1beta, and TNF-alpha signaling. We demonstrate transcriptional and post-transcriptional defects despite NF-kappaB signaling and intact MyD88-independent signaling and propose that dysfunctional complex 1 (IRAK1/TRAF6/TAK1) signaling, as a consequence of IRAK-4 deficiency, generates specific defects in MAPK activation that could underpin this patient's innate immunodeficiency. These studies demonstrate the importance of studying primary human cells bearing a clinically relevant mutation; they underscore the complexity of innate immune signaling and illuminate novel roles for IRAK-4 and the fundamental importance of accessory proinflammatory signaling to normal human innate immune responses and immunodeficiencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity

Human interleukin (IL) 1 receptor-associated kinase 4 (IRAK-4) deficiency is a recently discovered primary immunodeficiency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3- and TLR4-interferon (IFN)-alpha/beta pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with IRAK-4 deficiency, tested blood TLR responses f...

متن کامل

Regulation of Interleukin-1- and Lipopolysaccharide-Induced NF-κB Activation by Alternative Splicing of MyD88

MyD88 is an adaptor protein that is involved in interleukin-1 receptor (IL-1R)- and Toll-like receptor (TLR)-induced activation of NF-kappaB. It is composed of a C-terminal Toll/IL-1R homology (TIR) domain and an N-terminal death domain (DD), which mediate the interaction of MyD88 with the IL-1R/TLR and the IL-1R-associated kinase (IRAK), respectively. The interaction of MyD88 with IRAK trigger...

متن کامل

IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses.

IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascad...

متن کامل

Regulation of IL-1 receptor-associated kinases by lipopolysaccharide.

IL-1R-associated kinase (IRAK) plays a pivotal role in IL-1R/Toll-like receptor (TLR)-mediated signaling and NF-kappaB activation. IRAK from leukocytes undergoes rapid activation and inactivation/degradation following IL-1 or LPS stimulation. The rapid degradation of IRAK may serve as a negative feedback mechanism of down-regulating IL-1R/TLR-mediated signaling and cytokine gene transcription. ...

متن کامل

Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.

Most members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) families transduce signals via a canonical pathway involving the MyD88 adapter and the interleukin-1 receptor-associated kinase (IRAK) complex. This complex contains four molecules, including at least two (IRAK-1 and IRAK-4) active kinases. In mice and humans, deficiencies of IRAK-4 or MyD88 abolish most TLR (except...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 177 11  شماره 

صفحات  -

تاریخ انتشار 2006